

Emad A. Zikry, President and Chief Executive Officer

THE 80-YEAR PROBLEM:

EXAMPLE AND MATHEMATICS

True Alpha	Correlation to Benchmark	Time to Measure
1%	.90	80 years
196	.94	48 years
1%	.98	16 years
2%	.90	20 years
2%	.94	12 years
2%	.98	4 years
3%	.90	>8 years
3%	.94	>5 years
3%	.98	<2 years

This table shows the sensitivity of measurement to assumptions about alpha and correlations. The first line indicates that if a manager had a true alpha of 1% and returns which had a correlation coefficient of r=.90, then 80 years would be required to assess whether the manager was adding value if you required 1 standard deviation of statistical significance. (To make measurement matters worse, the time goes up by the square of the standard deviation of statistical significance — i.e., for 2 standard deviations the time is 320 years, or 22x 80 years!)

The formula for the table was*: Time to Measure $T = \frac{\sigma_{pm}^2}{\sigma^2}$,

where T= the time needed to determine whether a manager produced a long-run alpha that was statistically greater than the return of the benchmark at the level of one standard error (84%), $\sigma_{pm}^2 = \sigma_p^2 + \sigma_m^2 - 2\sigma_p\sigma_m r_{pm} =$ the covariance of the difference between the two portfolios, $\alpha =$ the difference in returns, and $r_{pm} =$ the correlation between portfolios p and m.

The first line of the table was calculated with a simple assumption — the annual standard deviation is 20% for a managed portfolio and the benchmark. The calculations were: Time to Measure = $\frac{\sigma_{pm}^2}{\alpha^2} = \frac{\sigma_p^2 + \sigma_m^2 - 2\sigma_p\sigma_{m}r_{pm}}{\alpha^2} = \frac{(2)^2 + (2)^2 - 2(2)(2)(9)}{(.01)^2} = \frac{.04 + .04 - 2(.036)}{.0001} = \frac{.008}{.001} = 80 \text{ Years}$

Vanderbilt Research Team