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Calculating Implied Default Rates from CDS Spreads 

 
Introduction 

 

Credit market investors have to assess yield against the probability of default constantly. 

In this regard, many tools have been developed to help investors to estimate the default 

probabilities. Rating agencies publish actuarial tables regularly based on the long history 

of default experiences. Other tools such as CreditSights’ BondScore or KMV’s EDF 

combine company financials and equity market valuations with historical default 

experiences to estimate default probabilities. It is important to realize that when market 

provides a CDS quote on a credit, market is actually providing a market-implied default 

probability, which differ from experience-based estimates in a fundamental way.  In 

turbulent times fear causes markets to over-estimate default probabilities, and in good 

times greed causes market to under-estimate default probabilities.  

 

In the following we shall discuss the mathematics involved to calculate market implied 

default probabilities from term structures of CDS curves. The market implied default 

probabilities calculated from the algorithm outlined below have wide applications in 

credit trading and risk management, ranging from calculating the present value of a CDS 

contract to the fair value spreads of various synthetic CDS tranches.  

 

 

Notations 

 

)(tB : Risk-free discount factor at time t . 

)(tQ : The survival probability from time period ),0( t  

c : CDS spreads 

it : CDS payment dates. Ni ,...2,1= . 00 =t  is the starting date, TtN = is the ending date. 

R : Recovery rate 

 

 

Basic Equations 

 

The basic idea in determining the fair value of CDS spreads is that the expected present 

value of CDS premium payments must be equal to the expected present value of payout 

in the event of default. The expected present value of CDS premium payments is 
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The 2nd term represents the amount of payment accrued in the event that default occurs at 

time t between 1−it and it (remember that 0)( tdQ ). When day counting conventions are 

considered, the CDS spread should be adjusted by the appropriate factors. This expected 

present value of payments should equal to the expected present value of the payout from 

the CDS contract in case of default: 
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Therefore, we have  
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Constant Hazard Rates 

 

We apply equation (1) to the whole term structure of CDS curve: }{ jc with maturity dates 

}{ jT . Furthermore, we assume that hazard rate over time period ),( 1 jj TT −  is constant jh . 

 

Under the piece-wise constant hazard rate approximation we then have 
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In order to proceed further, we introduce a new set of notations. Over the time period 

),( 1 jj TT − , we denote the payment dates as }{ j

mt , where jnm ,....2,1,0= , with 10 −= j

j Tt  and 

j

j

n Tt
j
= . The CDS premium covering the time ),0( jT  is jc . Equation (1) can then be re-

written as  
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Bootstrapping 

 

We also apply exponential extrapolation to the discount curve: 
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Where  
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Combining Equations (1), (2) and (3), we have 
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After a change of variable j

mtt 1−−=  and let j

m

j

m

j

m ttt 1−−= , we have 
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The two integrals in Equation (5) can be carried out explicitly 
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Equation (5) can be solved numerically along the credit curve, in much the same way as a 

risk free discount curve is constructed from a set of government bonds. 

 

 

Limit of Instantaneous CDS 



 

CDS uses actual/360 day-counting convention. This can easily be adjusted by multiplying 

a factor of 365/360 to }{ kc in the above equations. In the limit of instantaneous CDS 

contract, Equation (1) reduces to 
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This gives the instantaneous hazard rate of 
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Limit of Infinitesimal CDS premiums 

 

In the limit of small CDS premiums, the second term in Equation (1) is of order O )( 2c  

and can be dropped. Equation (1) reduces to 
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This gives the relationship between c and H  

 





=

−−

−

=
N

i

iii

T

tBtt

dttBHR

c

1

1

0

)()(

)()1(

         (9) 

 

Equations (8) and (9) are useful in checking numerical algorithms. 
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